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Properties of the regular and irregular solid harmonics 

R J A Tough and A J Stone 
University Chemical Laboratory, Lensfield Road, Cambridge, CB2 lEW, UK 

Received 14 February 1977, in final form 4 April 1977 

Abstract. Stone’s Cartesian-spherical transformation formalism is shown to yield a unified, 
simple and concise demonstration of the properties of the regular and irregular solid 
harmonics. 

1. Introduction 

The regular and irregular solid harmonics r’C,, (e, 4) and r-’-’Cl,,, (e, d), where 
Cr, (e,+) is an un-normalised spherical harmonic (Brink and Satchler 1968), are among 
the simplest and most familiar special functions of mathematical physics. The standard 
derivations of their properties are, however, lengthy exercises in algebraic manipula- 
tion (Hobson 1931, Morse and Feshbach 1953) or group theory (Talman 1968). In this 
paper we define, and investigate the properties of, the spherical tensorial sets of 
quantities 

RI,(r)=[(21)!/2’]’’*(1!)-’ 2 r,, . . . ra,(al . . . a’(12.. . 1 ;  m) 

I l m ( r )  = (-1)’[2‘/(21)!]’’~ 1 v,, . . . ~ , , ( r - l ) ( a ~  . . . a1112 . . . I ;  m) 

(1) 

(2) 

where r, and Vu are Cartesian components of the vector field r and the gradient 
operator V respectively and (a l  . . . (~~112 , . . I ;  m) is a Cartesian-spherical (cs) trans- 
formation coefficient as defined by Stone (1975, 1976) whose notation, within the 
Condon-Shortley phase convention, we use here. By exploiting the properties of these 
coefficients we are able to determine the differential properties of these tensors and to 
establish the addition theorems they obey. The defining relations (l), (2) are then shown 
to lead to very simple expressions for I/ ,@) and Rl,(r) in terms of the Cartesian 
derivatives of r-’. When Rl,(r) and Iim(r) are identified as being respectively regular 
and irregular solid harmonics we find that we have derived the principal properties of 
these functions in a straightforward and systematic fashion. 

a,...,, 

and 

ai...ni 

2. Differential properties 

In this section we determine the forms taken by V,R~,(r) and V,Ilm(r), where V, is a 
cyclic component of the gradient operator defined by 

v, =c VabI1;cL). (3) 
U 
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From (1) and ( 3 )  we have 

. . .  

. . .  

and so we have 

x ( a l  . . . ar112.. . I ;  m )  

x ( a l . .  . a I ) 1 2 . .  . 1 ;  m). (4) 

As the cs coefficient ( a l  . . . ~2,112 . . . I ;  m )  is symmetric in all its Cartesian indices 
(Stone 1975) we have 

( a 1 . .  .ar112.. . 1 ;  m ) = ( a l . .  . a j - la j+ l .  . .aIaj112.. . I ;  m )  

and so (4) becomes, when we use the result 

where we have introduced the more symmetrical Wigner 3j  symbol in place of the 
Clebsch-Gordan coefficient. 

Similarly (2)  and ( 3 )  give us 

v,llm(r)= ( -1) ’[2’ / (2 / ) ! ]~’~  C ( a l  . . .a1112.. . I ;  m)(PIlp)VaVul.. . vR,(r-’). (7) 

As the Cartesian tensor V u , .  . . VUl(r-’)  is symmetric and traceless in each pair of its 
indices it has only Ith rank non-vanishing spherical components (see appendix). 
Consequently, on inverting the defining relation (2 )  and substituting this and the 
recursive definition of ( 1 2  . . . I + 1; v ( a I  . . . a,@) into (7) we obtain 

R i . . .u i  

P 
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‘ ) z/+l.m+r(r). = (-l)1+m+P[1(21 + 1)(21+ 3)11’2 ( m p - m - p  (9) 

We can now establish that both RI, ( r )  and Z,, ( r )  are harmonic functions; that is, 
that they are solutions of Laplace’s equation 

v2* = 0. 

This follows immediately in the case of ZI, ( r )  since r - l  is itself an harmonic function. 
Two applications of ( 5 )  give us 

V2R/m(r)=C (-1Y’VpV-JGn(r) 
P 

= [ / ( 1 -  1 ) ~  + 1)(21-  1)]”*~1-~, , (r)  

~ ~ ( - 1 ) ~ ( l - - I  I m + p  - p . L J l m ) ( 1 - 2 l m p I l - l m + p )  

from which V2R1, ( r )  = 0 follows by the orthogonality of the Clebsch-Gordan coeffi- 
cients. 

P 

3. Addition theorems 

We will now determine the forms taken by RI, (r’) and I!, (r’) ,  where r ’  = r +a. From 
the defining relation (1) we have 

I 1/2 1 -1  R1,(r’)= [ ( 2 1 ) ! / 2  ] ( 1 . )  r k ,  . . . r&,(al . . . ( ~ ~ 1 1 2 . .  . 1 ;  m )  ( l a )  
a1 ... ai 

where rh = r, +a,.  By direct expansion we have 

r & ,  . . . rhl = a,, . . . aaI +C aa1 . . . a,,-,a,,+, . . . aalrai 
I 

+C a,, . . . aa,-+za,+, . .  . a P , - , ~ ~ , + , . .  . aatragra,+. . .+lax.. . la, 
1 . i  

which gives us, on substitution into ( l a ) ,  

where we have again exploited the symmetry of (a1 . . . a1112 . . , I ;  m )  in its Cartesian 
indices. A standard Cartesian-spherical transformation (Stone 1976) enables us to 
evaluate 

1 r,, . . . r,,a,,+, . . . a, , (@,  . . . ~1~112.. . I ;  m}. 
U1 ... a1 
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Explicitly we have 

1 r,, . . . ru,a,,+l . . . aPl(a1 . . . a l ( 1 2 . .  . I ;  m )  
P I  ... PI 

S 

= n [(21+2a -2s - 1)(2a + 1 ) y 2  W(a - 1 1 I --s 1 --s +a; a 1 --s +a - 1) 
a = l  

x C r,, . . . ru , (a l . .  . as112. .  . s; t)a,,+, . . . aaI 

x((Y,+ ' . . . ( Y I ~  12 . . .  I -s;m-t)( l - -ssm-t t l Im).  

P I . . . P I  
I 

As the Racah W function has a value given by 

W(c7 - 1 1 I-s I - - s  +a; al --s +a - 1) = [(21-2s + 2 a -  1)(2a+ 1 ) p 2  

we have, after identifying Rst(r)  and RI-~, , , , -~(U)  

4, (r') can be found by transforming the Taylor series expansion 

V u , .  . . V u l ( R - l ) R = , + a =  1 (-s!)-'rB1 . . . T @ , v ~ ,  . . . v~,v, ,  . . . v, , (R-')R=, ,  
S 

B 1 ... 8. 

lrl la I, 
from Cartesian to spherical tensorial form. Standard methods give us 

1 (ai . . . ~ ( 1 2 . .  . I ;  m)rsI .  . . rS,v8,. . . v~,v, ,  . . . v , , ( R - ' ) ~ = ,  
P l . . . U l  

81 ... 8. 

=(-1)s[(21+2s+1)/(21+1)]'~2 fi [(21+2a-1)(2a+1)]'/2 
u = l  

x W ( a - 1  1 1 I + a ; o I + o - 1 )  1 ( P ~ . . . P ~ I ~ . . . S ; ~ ) ~ ~ , . . . T ~ ,  
a i .  ..Pi 

81 ... 8. 
I 

x ( p 1  . . . p S a l . .  . a l ( 1 2 . .  . I+s,m-t)  

X v p , .  . . v ~ , ~ , , .  . .VP,(R-')~=,(L+SSm 

Evaluation of the Racah W functions simplifies this to 

t tll m).  



Regular and irregular solid harmonics 1265 

When 1 = m = 0 this result reduces to an expansion of Ir +a/ - ’ :  
00 

I f  +a(-’  = ( - l )s+r~s~(f)Zs,- t (u) ,  lr I < la I. 
s - 0  
111- 

4. Explicit expressions for I,&) and R d r )  

The defining relation (2), along with the recursive definition of the cs coefficient 
( a l . .  . (~1112.. . 1 ;  m), gives us the result 

z~m(r)=-[1(21-1)]-1’2~VIrz~-l,m-Ir(r)(~-l 1 m - p p ( l m ) .  (15 )  
Ir 

We will now prove, by induction, that this implies the following expression for IIm (r) 
in terms of Cartesian derivatives of r-’: 

or, in terms of the spherical components of the gradient operator, 

m3O.  (17) 

To do this we substitute in (15 )  an expression of the form of (17) for Zl-l,m-w(r), and 
the algebraic expression (Rose 1957) for the Clebsch-Gordan coefficient, and making 
use of the result 

I m/2 
Ztm(r) = ( -1)  2 [ ( I  + m ) ! ( 1 - m ) ! ] - ” 2 ~ ~ ~ b - m ( r - 1 ) ,  

V - ~ V ~ ( ~ - ’ )  = ;Vi(r-’), r ZO, 

we find that some straightforward algebra leads to (17). This establishes the induction. 
As (17) holds trivially when 1 = 0 we now see that it holds for all I, m L 0. 

The result 

(a1.. . ~~1112..  . 1 ;  m)* = (-1)”’(a1.. . a,J12..  . I ;  -m)  
then gives us 

* Z I , - ~  ( r )  = (-1)‘“ZIm ( r )  
and so we can write 

maO.  (18)  I m/2  II,&,,,(r) = (-1) 2 [ ( ~ + m ) ! ( ~ - m ) ! ] - ” * ~ ~ ~ ~ ~ - ~ ( r - ’ ) ,  
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We will now show that 

I fm(r )  = r -2f -1Rfm(r) .  

The proof is again by induction. Firstly though, we find it convenient to introduce the 
spherical tensorial set of quantities 

U/,(?)= RI,(?)= r-'Rim(r) ( 2 0 )  
where ?= IrI-lr. V f m ( i )  is thus a function only of the direction of r and not of its 
magnitude. The Lth  rank spherical tensor 

C %/m(i)%frm@)( I  I' m m'lL M )  
mm' 

is again a function only of the direction of r ;  consequently we can write 

To identify the constant All,= we consider the special case in which i is e,, the unit vector 
in the z direction. It is readily shown from the definitions (20), (1) that Ce,, (e,) = CS,,~. 
From this we see that = (I I' 0 OIL 0), while inversion of ( 2 1 )  gives us 

%fm(i)%f,m,(i) = (I I' O OIL O)( I  I' m m'lL ~ ) % ~ ~ ( i ) .  
LM 

To establish (19) we substitute an expression of this form for Z I - ~ , ~ - , ( ~ )  into (15) .  This 
then gives us 

I,m(r)=-[l(21- 1)]1'2x ( I -  1 1 m -CLCL(Im)V,(r-2'"R/-l,m-,(r)). 
CI 

Now 

VCI(r-2f+1RI- l ,m_, (r ) )  = r-2'+1V,Rf-l,m-,(r) - (21 - l)r-2f-1r,,R/-l ,m-,(r).  (23) 
The first term in this expression is readily obtained from (5); to evaluate the second term 
we note that 

r,A-l,m-w(r) 

= rf%1& (?)%f-l,m-fi(?) 
= r ' { [1 / (21 -  1)]"~(1 I - 1 p. m - ,L If m)%!, (?) + (-1 )" (21 - I)-' 

x [ ( I - I ) ( ~ / - ~ ) J " ~ ( I  I - 2 - p  mjl-  1 m - p > % / - 2 , m - , ( ? ) }  

where we have used ( 2 2 )  and the symmetry properties of the Clebsch-Gordan coeffi- 
cients. Thus from ( 2 3 )  and ( 5 )  we see that 

Ifm(r)  = r - ' - l%L, ( i )  1 (1 I - 1 p. m - P ( I  m>(f  - 1 1 m -p.  p.11 m> , 
= r-'-'%,,,,(?) = r-"-'RIm(r). 

This establishes the induction. As the result holds trivially for 1 = 0 we see that it holds 
for all I, m. We now have an explicit expression for RI, ( r ) :  

r 2 f + l  
R a m  ( r )  = I i , * m  ( r )  

I m / 2  
= (-1) 2 [ ( ~ + m ) ! ( ~ - m ) ! ] - " ~ r ~ ' + ' ~ ~ l ~ b - ~ ( r - ~ ) ,  m 30. 
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5. Discussion 

The quantities RI, ( r )  and I/, ( r )  are respectively the regular and irregular solid 
harmonics r'Clm(e, 4) and r-'-'C/,(O, 4). This identification is made most readily 
through the results (17) and (19) derived in 9 3. We note the result (Hobson 1931, p 
134) 

P;" (cos e) eim" a'-m 
(-1)l-yl -m)! + + 1  = (i + i $) p (:) , m 2 0, 

where P;"(z) is an associated Legendre function with argument z ; the identification 

I i m ( r ) =  r+lC/m(e, 4) 

R/ , ( r )=r21+1~/m(r )=r iC / , (0 ,  4). 

then follows immediately. From (19) we obtain 

The quantities Ce,,(i) of (20) can be identified with the spherical harmonics C,,(O, 4), 
where 8, 4 are the polar angles defining the direction of i. 

Having identified the regular and irregular solid harmonics we see that, while no 
new results have been obtained, our cs transformation formalism, which combines the 
conceptual simplicity of the Taylor series expansion methods of the classical approach 
described by Hobson (1931) with the more powerful algebraic methods of the represen- 
tation theory of the rotation group, has allowed us to derive the principal properties of 
these functions in a concise and elegant fashion. The differential properties of 9 2 have 
previously been obtained both as special cases of the gradient formula, conventionally 
derived by dint of some fairly heavy Racah algebra (Rose 1957) and by classical 
methods in which the Clebsch-Gordan coefficients are carried throughout in their 
explicit algebraic forms (Hobson 1931). The addition theorems of 9 3  have been 
obtained both by classical methods (Hobson 1931) and by the use of sophisticated 
group theoretical techniques (Talman 1968); the analysis involved in both these 
derivations is much more complicated than is that of our procedure. The demonstration 
of even the special case (14) from a Taylor series expansion is achieved by classical 
methods only 'after considerable algebraic drudgery' (Morse and Feshbach 1953). 
Finally, we note that of the derivation of (17) and Hobson's demonstration of (24) our 
proof is much the more compact. 
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Appendix 

It will be shown that a Cartesian tensor A , ,  of rank 1 which is symmetrical and 
traceless in each pair of indices has only (21 + 1) independent components, which form a 
rotationally irreducible set. 
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The cs coefficient projecting out  the spherical component Ail...i,,,, from the tensor 
A,,...,, is 

( a 1 . .  . a l b l . .  . j l ;  m). 

This coefficient will be, like the tensor itself, traceless in every pair of adjacent Cartesian 
indices. Therefore we have 

1 ~,,,~,+,(a1 . . .wb l  . . . j l ;  m >  
U..U,+l 

= S .  Ir+l  Jr-1 , ( - 1 p - I  (a l  . . . ( ~ , - ~ a , + ~ .  . . ( ~ l b l  . . . j r - l j r + z . .  .jl; m) 
= O  

which implies thatjr-l #jr+l. Consequentlyj,+l =jrV1 f 1, j r - l  f 2, these being the only 
values allowed by the triangle conditions on the coupling of the constituent 0' = 1) units 
to form the polyadic or archetypal tensor. 

The cs coefficient must also be invariant under the interchange of adjacent 
Cartesian indices. Therefore we have 

(r ,  r + l)(al . . . al[jl . . . j , ;  m) 

1 j r + i  j r - l  1 7  f = 1 (-1y+f[(2jr + 1)(2f+ l)ll'z { 
f 

x(a1.. . . ( Y l l j l . .  . j , - lf] ,+l. .  .I/; m) 
= (a1 . . . alljl. . . j l ;  m). 

It is readily verified that only those cs coefficients for which jrCl =jr -1*2  have this 
property. Nowj, = 1 and thereforej3 = 3. The (1,jz,j3) triangle condition requires that 
j z  = 2; the ( j 3 ,  1, j 4 )  triangle condition requires that j 4  = 4. Similarly j ,  = r. Conse- 
quently the only cs coefficients with the requisite properties have the form 
(a l  . . . ~~1112. .  .1 ;  m); this proves the theorem. 

We note that the fact that the tensor A,,...,, has only (21 + 1) independent compo- 
nents can also be proved quite simply by counting. A totally symmetrical rank 1 
Cartesian tensor has f(l + 1)(1+ 2) independent components; the fl(1- 1) constraints 
implicit in the tracelessness property of the tensor reduce this number of independent 
components to 

i(1 + 1)(1+2)-fl(l- 1)=$(41+2)= 21 + 1.  

An example of a Cartesian tensor with these properties which is of considerable 
importance in physical applications is the interaction tensor (Buckingham 1965) 
Tul...,,(r) = Vu, . . . Va1(rF1).  We now see that the only non-vanishing spherical compo- 
nents of this tensor are proportional to the irregular solid harmonics: 

1 

...it, m ( r )  = (-U%W!/~Y n aVJP1c,,,,(e, 4) -  
U =  1 
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